
PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 1

PDF - XSOAR - Security
Orchestration and Automation
Course - Kalec Blau
Version 2.0.0

 XSOAR - Security Orchestration and Automation Course PDF © 2024 by Kalec
Blau is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/

📌 The following document is a course guide that contains all related information.
For any questions or suggestions, do not hesitate to contact me.

🏷️ COUPON: Get your coupon!

https://nostwin.github.io/xsoar-course-materials/

🔒
Feel free to share this material with anyone who needs it for learning XSOAR, as
long as the authorship is mentioned :)

If it has been helpful to you, please support me by purchasing my course on Udemy
using this link.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-
course/?referralCode=8F469AAD51A79BAA5950

Thank you very much for your support!

Kalec Blau ⚡

Happy Automating!

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 2

0. Course Introduction
1. Introduction to SOAR and XSOAR

1.1. Introduction to SOAR
1.2. Introduction to XSOAR

2. XSOAR Overview
2.1. XSOAR UI and Configuration

3. XSOAR Concepts
3.1. Incidents, types and fields
3.2. Integrations and Instances
3.3. Classifiers and Mappers
3.4. Playbooks and Context
3.5. Automation Scripts, Commands and CLI
3.6. Lists
3.7. Threat Intelligence
3.8. Jobs
3.9. How to search in XSOAR
3.10. Marketplace and Content Packs

4. Playbook Development
4.1. Tasks Types
4.2. Sub-Playbooks
4.3. Loops
4.4. Filters and Transformers
4.5. Extend Context, Using argument and Quiet Mode
4.6. Error Handling and Playbook Metadata

5. Automation Scripts Development
5.1. Demisto Class and Common Server functions
5.2. Develop in your favourite IDE
5.3. Developing Automation Scripts
5.4. Docker Images
5.5. XSOAR API

6. Integration Development
6.1. Integration Categories and Uses Cases
6.2. Integration Commands, Methods and Functions
6.3. Developing Integrations I
6.4. Developing Integrations II

7. Pre-processing and Post-processing
7.1. Pre-Processing Rules
7.2. Pre-processing Scripts
7.3. Post-processing Scripts

8. Building Your XSOAR Automated Workflow
8.1. Use Case Definition
8.2. Walkthrough
8.3. Another Use Case and Automated Workflow

9. Course Conclusion
10. Reference and Further Reading

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 3

0. Course Introduction
In this course, we will cover several key topics. First, we will explore the concept of SOAR
(Security Orchestration, Automation, and Response), XSOAR and its various use cases.

Next, we will perform the necessary configurations to get it up and running. As we progress,
we will learn about the different components of XSOAR, such as incident types, integrations,
and instances.

Finally, we will develop automations and playbooks to automate incident response tasks.

💡 This course uses XSOAR 6

1. Introduction to SOAR and XSOAR

Key Points Summary

Concepts: SOAR and XSOAR.

Introduction to the XSOAR incident lifecycle.

1.1. Introduction to SOAR
SOAR stands for Security Orchestration, Automation, and Response. It's a suite of tools and
processes that help organizations automate and streamline their security operations. The
goal of SOAR is to improve the efficiency and effectiveness of security operations by
integrating different security tools, automating repetitive tasks, and enabling faster and more
accurate incident response.

Key components of SOAR

1. Orchestration: Connecting and integrating various security tools and systems to work
together seamlessly.

2. Automation: Using scripts and predefined workflows to automate repetitive tasks, such
as alert triage, data collection, and incident response actions.

3. Response: Enabling security teams to respond to threats quickly and effectively with the
right information and actions.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 4

Benefits

1. Increased Efficiency: Automating repetitive tasks frees up security analysts to focus on
more complex issues.

2. Improved Accuracy: Automated processes reduce the chances of human error, leading
to more reliable and consistent responses.

3. Faster Incident Response: Automation and orchestration allow for quicker detection and
mitigation of security incidents, minimizing potential damage.

4. Enhanced Collaboration: Integrated tools and streamlined workflows improve
communication and collaboration among security team members.

5. Scalability: SOAR platforms can handle large volumes of alerts and incidents, making it
easier to scale security operations as the organization grows.

Use Case Examples

1. Phishing Attack Response:

Scenario: A user reports a suspicious email.

SOAR Solution: The SOAR platform automatically analyzes the email, checks for
known indicators of compromise (IOCs), and quarantines the email if it is malicious. It
then updates the security team and relevant users about the action taken.

2. Malware Detection and Containment:

Scenario: An endpoint detects a potential malware infection.

SOAR Solution: The SOAR system automatically isolates the infected endpoint from
the network, collects relevant data (logs, file samples), and runs further analysis. It
then triggers an alert to the security team with a detailed report of the incident.

3. User Account Compromise:

Scenario: Suspicious activity is detected on a user’s account.

SOAR Solution: The SOAR platform automatically resets the user’s password, logs the
user out of all sessions, and notifies the user and the security team. It also triggers an
investigation into the root cause of the compromise.

1.2. Introduction to XSOAR
XSOAR stands for Extended Security Orchestration, Automation, and Response. It is a
product offered by Palo Alto Networks, designed to extend the capabilities of traditional
SOAR platforms. XSOAR integrates with a wide range of security tools and provides
advanced orchestration, automation, and response capabilities, along with additional
features such as threat intelligence and case management.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 5

2. XSOAR Overview

Key Points Summary

UI and configuration overview

2.1. XSOAR UI and Configuration
User Account Configuration

Change name, password email, profile picture…

Access Management

Invite users

Create and assign Roles

Password Policy

Adjust password complexity requirements

Server Troubleshooting

Download log bundle

System Diagnostics

Server performance and metrics

3. XSOAR Concepts
3.1. Incidents, types and fields

Key Points Summary

Concepts: Incidents, Incident Types, Incident Fields and Custom Fields and its
configuration.

Incident Layout Overview.

Best practices for Incident Fields.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 6

Incidents: These are the primary entities in Cortex XSOAR that represent events or issues
that require investigation and resolution. They can be created:

Integrations: From alerts generated by various security tools (SIEM, EDR..).

Manually.

API.

Incident Types: These define different categories or classes of incidents, such as
phishing, malware, DDoS attacks, etc. Each type can have specific fields, workflows, and
automations associated with it.

Incident Fields: These are data attributes associated with an incident, such as incident
ID, severity, status, description, reporter, timestamps, and custom fields specific to the
incident type.

Incident Layouts: These define the user interface layout for displaying incident details
within Cortex XSOAR. Layouts can be customized to show relevant information for
different incident types, helping analysts quickly access the most pertinent data during
their investigation.

Each incident in Cortex XSOAR is organized into several sections.

Incident Info: This section provides an overview of the incident, displaying key details
and metadata.

War Room: This section is a collaborative space where analysts can discuss, investigate,
execute commands and respond to the incident.

Work Plan: This section outlines the automated and manual tasks required to handle the
incident, typically driven by a playbook.

Evidence Board: This section is used to gather and organize evidence related to the
incident. It helps in structuring the investigation and supports post-incident analysis.

Related Incidents: This section displays other incidents that might be related to the
current one, helping analysts identify patterns and correlations.

Canvas: This section provides a visual workspace where analysts can map out the
incident and its related components.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 7

👍 Best practices

Use Built-in Fields When Possible: Before creating a custom field, check if
there is a built-in field that can serve your purpose. Built-in fields are optimized
for performance and integration within the system.

Keep It Simple: Only create custom fields when absolutely necessary. Too
many fields can clutter your incident forms and make them harder to use.

Consistent Naming Conventions: Use clear and consistent naming conventions
for custom fields to ensure they are easily understood by all team members.

📒 Summary

Incidents are the main entities representing security events.

Incident Types categorize incidents and define their structure and automations.

Fields, both built in and custom, capture and organize the data associated with
incidents and incident types. Fields can be associated with one or several
incident types.

3.2. Integrations and Instances

Key Points Summary

Concepts: Integrations, Instances, Marketplace.

DEMO: Install an Integration from the Marketplace.

DEMO: Create an Integration Instance.

Integrations: These are connectors that allow Cortex XSOAR to interact with external
security tools and services (e.g., SIEMs, firewalls, threat intelligence platforms).
Integrations facilitate data ingestion and enable automated actions on these tools.

Categories: Analytics and SIEM, Authentication, Case Management, Data
Enrichment, Threat Intelligence, Database, Endpoint, Forensics and Malware Analysis,
IT Services, Messaging, Network Security, Vulnerability Management.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 8

Integration Instances: These are specific configurations of integrations, including
connection details, credentials, and other settings necessary for Cortex XSOAR to
communicate with the integrated tool or service. You can have multiple instances of an
integration to connect to different environments or tenants.

💡 The Marketplace in Cortex XSOAR is a centralized platform where users can find,
download, and install various integrations, automations, content packs, and other
useful tools that enhance the functionality of Cortex XSOAR. Think of it as an app
store specifically for security operations and automation.

Example

❗ In case you are using the “Sample Incident Generator”, remember to disable it in
order to avoid being flooded with incidents and hence, running out of daily free
commands.

3.3. Classifiers and Mappers

Key Points Summary

Concepts: Classifiers and Mappers.

DEMO: Create a Classifier and a Mapper, assign it to an integration instance and
test the results.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 9

Classifiers: These determines the type of incident that is created from a specific
integration. When an incident is ingested from an external source, the classifier
determines the incident type based on the fields and values present in the incoming data.

Mappers: These map fields from external systems to Cortex XSOAR incident fields,
ensuring that data is properly translated and stored within the platform. Mappers work
alongside classifiers to standardize data from different sources.

Any fields that you do not map, are automatically mapped to XSOAR labels. While this
information can still be accessed, it is always easier to work with fields.

Example

Splunk Alert Field XSOAR Field

_raw Raw Event

error Error Message

app_id Application ID

📒 Summary

Classifiers determines the incident type from incoming data.

Mappers map external fields to XSOAR built in or custom fields.

Both can be assigned to a specific integration instance.

❗ In case you are using the “Sample Incident Generator”, remember to disable it in
order to avoid being flooded with incidents and hence, running out of daily free
commands.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 10

3.4. Playbooks and Context

Key Points Summary

Concepts: Playbook, Context, Inputs, Outputs, Playbook Debugger, Quiet Mode.

Playbook designer canvas overview.

DEMO: Create a simple Playbook that generates a random password and print the
results.

💡 Playbooks are seen more in depth in the Playbook Development module.

Playbooks: These are automated workflows that guide the incident response process in
Cortex XSOAR. Playbooks can include tasks, decision points, integrations, and
automations to standardize and streamline how incidents are handled.

Context: The context in Cortex XSOAR refers to the data that is shared and accessible
across different tasks within a playbook and between playbooks. It acts as a shared
storage where information is saved and retrieved as the playbook executes. Context data
helps in maintaining the state of the incident and facilitates data sharing between
different parts of the workflow. Context is presented as JSON format.

Inputs: These are the parameters or data required by a playbook or a specific task within
a playbook to execute. Inputs can come from various sources such as:

Incident Fields: Data fields associated with the incident, like the incident type,
severity, or custom fields.

Previous Tasks: Outputs from preceding tasks in the playbook can serve as inputs
for subsequent tasks.

Manual Inputs: Data provided manually by analysts when triggering a playbook or
during playbook execution, often through prompts or forms.

Outputs: These are the results produced by a playbook or specific task within a
playbook. Outputs can be used in several ways:

Context Data: Outputs can be stored in the context to be used later in the playbook
or by other playbooks.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 11

Incident Fields: Outputs can update incident fields, providing new or updated
information about the incident.

Task Results: Outputs can directly influence the flow of the playbook, determining
the next steps or decisions in the workflow.

How Context, Inputs, and Outputs work together

1. Playbook Initialization: When a playbook starts, it may receive initial inputs from the
incident fields, manually provided data, or context data from other playbooks or tasks.

2. Task Execution: Each task within the playbook will use the provided inputs to perform its
designated function. The task may involve running a script, executing a command,
querying an integrated system, or waiting for human input.

3. Generating Outputs: After executing, the task will produce outputs based on its actions.
These outputs can include results of data queries, analysis findings, or any other relevant
information.

4. Storing in Context: The outputs are stored in the context under specific context keys and
paths. This makes the data available for subsequent tasks in the playbook or for use in
other playbooks.

❗ When you enable Quiet Mode, War Room entries are not created and inputs and
outputs are not stored in the Work Plan. Quiet Mode improves performance by
increasing playbook speed and saving database size (recommended in production
environments). Turn it off when you are debugging.

3.5. Automation Scripts, Commands and CLI

Key Points Summary

Concepts: Automation Scripts, Built in , integration and reputation Commands,
Playground, XSOAR CLI, Cortex XSOAR IDE.

DEMO: Create a simple Automation Script that checks password complexity.

DEMO: Explore the Playground and test commands.

💡 Automations are seen more in depth in the Automation Development module.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 12

Automations: These are scripts or actions that can be executed automatically as part of
a playbook or manually by analysts. Automations can perform a wide range of tasks,
such as data enrichment, notification sending, or executing commands on integrated
systems.

Playground: This is a safe, isolated environment within Cortex XSOAR where analysts
can test commands, integrations, and scripts without affecting real incidents or
production data.

CLI (Command Line Interface): Cortex XSOAR provides a CLI that allows users to
execute commands and interact with the platform directly, often used for troubleshooting,
testing, and scripting.

! Integration commands, automations, and built-in commands. For example, add
evidence, assign an analyst, etc.

!Print value="Hello World!"

/ System commands /operations. For example, add notes, close an investigation,
etc.

/clear_playground

@ User tagging. Send notifications to administrators, teams, analysts, etc.

@admin (Admin) Hello!

Built-in Commands: Cortex XSOAR comes with a wide range of built-in commands that
you can use out-of-the-box. These commands cover a variety of functions like querying
threat intelligence sources, interacting with ticketing systems, and performing data
enrichment. Built-in commands save you time by providing ready-made solutions for
common tasks, allowing you to focus on creating more strategic automation.

!GeneratePassword min_digits=5

Reputation Commands: Reputation Commands are a subset of built-in commands
specifically designed to fetch reputation data from various threat intelligence sources.
For example, you might use a reputation command to check the threat level of an IP
address or a domain.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 13

!ip ip=8.8.8.8

IsPasswordValid

def main():

try:

 # Get the input password

 password = demisto.args().get('password')

 # Define password complexity requirements

 requirements = {

 "length": len(password) >= 8,

 "uppercase": any(char.isupper() for char in password),

 "lowercase": any(char.islower() for char in password),

 "digit": any(char.isdigit() for char in password),

 "special": any(char in "!@#$%^&*()-_+=" for char in password

 }

Check if password meets all requirements

 is_valid = all(requirements.values())

 # Return results

 results = CommandResults(

 outputs_prefix='isValid',

 outputs=is_valid,

)

 return_results(results)

 except Exception as e:

 return_error(f'Failed to execute Script. Error: {repr(e)}')

if __name__ in ('__main__', '__builtin__', 'builtins'):

 main()

!isPasswordValid password=1234 #False

!isPasswordValid password=1At$P4ss09 #True

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 14

3.6. Lists

Key Points Summary

Concepts: Lists.

DEMO: Create and use a lists to enrich your data.

Lists: A list is a data container where you can globally store data within Cortex XSOAR.
Despite the name lists, the data can be in any text format, and can even store files or an
HTML template that you can define to use as part of a Communication task. Use case
examples:

A list of approved IP addresses that are allowed to access your network (whitelist).

A list of malicious domains that should be blocked (blacklist).

A list of file extensions that you want to exclude in an automation (filter).

A list (JSON format) to map your customers name to an ID (mapper + enrichment).

Sample Data

{

"192.168.1.1": "VM1",

"192.168.1.2": "VM2",

"192.168.1.3": "VM3"

}

List Commands

XSOAR provides a set of built-in commands to interact with lists:

Command Description

getList Retrieves the contents of the specified list.

createList Creates a list with the supplied data.

addToList Appends the supplied items to the specified list.

setList Adds the supplied data to the specified list and overwrites existing list data.

removeFromList Removes a single item from the specified list.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 15

Accessing list content

In a playbook, you can access the data in a list via the context button under Lists, or by using
the path ${lists.<list_name>} .

Access the list's content from an Automation Script

 my_list = demisto.executeCommand("getList", {"listName": list_name})[0]

HostnameLookup

def main():

try:

Get the IP Address given by the user

ip = demisto.args().get("ip")

Get lists content

contents = demisto.executeCommand("getList", {"listName": "IP to

contents_dict = json.loads(contents)

Retrieve the hostname

hostname = contents_dict.get(ip, "Not found")

 # Return results

 results = CommandResults(

 outputs_prefix='hostname',

 outputs=hostname,

)

 return_results(results)

 except Exception as e:

 return_error(f'Failed to execute Script. Error: {str(e)}')

if __name__ in ('__main__', '__builtin__', 'builtins'):

 main()

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 16

3.7. Threat Intelligence

Key Points Summary

Concepts: Indicators, Indicator Types, Threat Intelligence Integrations, Indicator
Exclusion List, Indicator Extraction Rules.

DEMO: Configure an Indicator Extraction Rule to auto extract and enrich indicators
automatically.

DEMO: Configure Indicator extraction and enrichment in a playbook task.

Threat Intelligence Indicators (TI Indicators): These are pieces of data related to
potential security threats, such as IP addresses, domains, file hashes, and URLs. Cortex
XSOAR can ingest and manage TI indicators to enrich incidents and support threat
hunting and detection activities.

They are extracted using regex (pattern determined by Indicator Type).

They are enriched by running reputations commands (manually or determined by
Indicator Type).

Indicator Types: Indicator Types categorize the various forms of indicators based on
their nature and usage. The following is a list of some of the indicator types:

IP Address

Domain

URL

File

Email

Threat Intelligence Integrations: Threat Intelligence Integrations are the connections to
various threat intelligence sources that provide data on current threats.

Data Enrichment & Threat Intelligence: Data enrichment refers to the process of
enhancing raw data by adding relevant information from additional sources. It
involves integrating and augmenting the initial data set with more context or details.

Example: MITRE ATT&CK Integration.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 17

Threat Intel Feeds: Threat intel feeds are streams of data provided by various
sources that contain information about known and emerging threats. These feeds
offer a continuous supply of indicators and threat-related information.

Example: Virus Total Integration.

Indicator Extraction Rules: Indicator Extraction Rules define how indicators are identified
and extracted. These rules specify patterns (regular expressions) and formats to look for,
ensuring that relevant indicators are automatically detected and processed. After
extraction, the indicator can be enriched using commands (such as the !whois
command). These can be applied to Incident Types.

Indicator extraction supports the following modes:

Mode Description

None Indicators are not extracted automatically.

Inline

Indicators are extracted synchronously within the context. Extraction occurs
before playbook tasks run, ensuring robust information per indicator. This may
delay playbook execution as extraction and enrichment happen in real-time
and are placed into the incident context.

Out of band

Indicators are extracted asynchronously, running in parallel to other actions.
Extracted data is not immediately available for task inputs or outputs. Used
when indicators are not needed for immediate playbook flow, potentially
improving system performance. Extracted indicators do not appear in the
context.

System default Uses default extraction modes based on different scenarios:

- Incident creation: Default is Inline, extracting from all fields at creation.
- Incident field change: Default is Out of band, extracting asynchronously.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 18

Mode Description
- Tasks: Default is None, no automatic extraction.
- Manual: Default is Out of band, extraction from CLI commands.

Indicator built-in commands

What is 8.8.8.8?

!extractIndicators text="ip: 8.8.8.8" auto-extract=inline

!enrichIndicators indicatorsValues=8.8.8.8

💡 Reputation commands, such as !ip and !domain , can only be used after you
configure and enable a reputation integration instance, such as Virus Total and
Whois.

3.8. Jobs

Key Points Summary

Concepts: Jobs (Time triggered and Triggered by delta in feed).

DEMO: Create a time triggered job to delete expired threat intelligence indicators
daily.

Jobs: These are scheduled tasks within XSOAR that enables you to run playbooks that
run at defined intervals or based on certain events. There are two types:

Time triggered: These jobs run at specific times. For instance, you can schedule a
job to run every night to remove expired indicators from your system.

Triggered by delta in feed: These jobs are event-driven. They run when there are
changes to a feed. For example, you can set up a job to run a playbook whenever a
Threat Intelligence Management (TIM) feed finishes fetching new indicators.

Jobs Use Cases

Daily or monthly security reports.

Scheduled monitoring of VPN connectivity.

Proactive threat investigations using uploaded STIX files containing IOCs.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 19

Monitoring and renewal of expiring SSL certificates.

Scanning for security vulnerabilities in applications.

Validation of adherence to policies and regulations.

Continuous assessment of security system performance.

Managing access for privileged users, including onboarding and offboarding.

Auditing the security configurations of endpoints.

Centralizing and analysing system logs for security insights.

3.9. How to search in XSOAR

Key Points Summary

Concepts: Search syntax.

DEMO: Search for data in XSOAR.

❗ The search follows the Bleve query syntax

Search Query Examples

Search for active incidents with Information severity

status:Active and severity:Informational

Search for active incidents or Informational incidents

status:Active or severity:Informational

Search for all incidents that are not closed and are not in the job ca

-status:closed -category:job

Search playbooks whose name starts by Block

name:Block*

Search for automations whose code contains "import json"

script:*import json*

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://blevesearch.com/docs/Query-String-Query/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 20

Search for incidents that were created on or after July 1, 2024

created:>="2024-07-01T00:00:00 +0200"

Search for indicator values that contain "www" and end with ".com" usi

value:"/w{3}..*.com/"

Search Command Examples

Search for incident id 523

/search incident.id:523

Search indicators that ends with ".com"

/search indicator.value:*.com

3.10. Marketplace and Content Packs

Key Points Summary

Concepts: XSOAR Marketplace and Content Packs.

DEMO: Explore the Marketplace.

DEMO: Create your own Content Pack to import it in another XSOAR environment.

Marketplace: In XSOAR, the marketplace refers to a centralized location where users can
discover, download, and manage integrations, playbooks, automations, and other
extensions for the XSOAR platform. It acts as a repository of pre-built content that
enhances the functionality and capabilities of XSOAR.

Content Packs: Content packs in XSOAR are bundles of integrations, playbooks, incident
types, layouts, scripts, and other configurations that are packaged together for specific
security or IT operations use cases. They are designed to simplify deployment and
configuration of commonly used workflows and automation within the XSOAR platform.
Content packs can be created by Palo Alto Networks (the company behind XSOAR),
third-party developers, or by organizations themselves to meet their specific needs.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 21

💡 Playbooks and Automation can be individually exported as a yml file and imported
using the upload button.

4. Playbook Development
4.1. Tasks Types

Key Points Summary

Concepts:

Section Headers

Manual Tasks

Automated Tasks

Conditional Tasks

Data Collection Tasks

DEMO: Create and test different task types.

Section Headers

Section Headers are used to organize and visually separate different parts of a playbook.
They act as markers or dividers to group related tasks together.

These headers do not perform any actions but are useful for making playbooks more
readable and easier to manage, especially in complex workflows.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 22

Example: You might have a Section Header titled "Initial Analysis" followed by tasks
related to data collection and analysis, and another titled "Remediation" for tasks related
to mitigating threats.

Manual Tasks

Manual Tasks require human intervention to complete. These are often used when a task
needs a decision or input from an analyst.

They typically include instructions for the analyst on what needs to be done, and the
playbook will pause execution until the task is marked complete.

Example: A task might ask an analyst to review suspicious activity logs and decide
whether to escalate the incident.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 23

Automated Tasks

Automated Tasks are actions that the playbook can perform without human intervention.
These tasks execute predefined commands, scripts, or integrations with other systems.

They are essential for automating repetitive and time-consuming tasks, enabling faster
response times and reducing the burden on analysts.

Example: Automatically querying an endpoint for its status, updating a ticket in a ticketing
system, or running a script to block an IP address.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 24

Conditional Tasks

Conditional Tasks introduce branching logic into the playbook. They allow the workflow
to take different paths based on the evaluation of certain conditions or criteria.

This type of task uses "if-else" logic to decide the next steps in the playbook based on
variables, outputs of previous tasks, or other criteria.

Example: If the severity of an incident is high, the playbook might proceed to an
immediate containment task; if it is low, it might move to a monitoring phase.

Data Collection Tasks

Data Collection Tasks are designed to gather information from various sources, which
can then be used in subsequent tasks within the playbook.

These tasks can include querying databases, retrieving logs, or collecting input from
users.

Example: Collecting information about a potentially compromised endpoint, such as
running processes, network connections, and system configurations.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 25

4.2. Sub-Playbooks

Key Points Summary

Concepts: Sub-Playbooks, Parent Playbooks, Playbook Inputs and Playbook
outputs.

DEMO: Create a Sub-Playbook for checking the reputation of an IP Address and
use it in a parent Playbook.

Sub-Playbooks: These are smaller, modular playbooks that are designed to execute a
specific set of tasks within a larger playbook. They help in organizing and managing
complex workflows by breaking them down into more manageable parts. Sub-Playbooks
can be reused across different Parent Playbooks, promoting modularity and reducing
redundancy.

Parent Playbooks: These are the main playbooks that orchestrate the entire workflow,
often calling multiple Sub-Playbooks to perform various tasks. They are the top-level
playbooks that define the overall logic and sequence of actions to be performed in
response to an event or incident.

Playbook Inputs and Outputs: Playbooks, similar to automations and integration
commands, can receive inputs. These inputs are utilized within the sub-playbook and its
tasks to carry out specific functions. Sub-playbooks produce outputs, which are then
stored in the context data of the parent playbook.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 26

You can access playbook inputs values with ${inputs.<input_name>} .

💡 It is recommended to have the context private to the sub-playbook so that only the
outputs that we define will be returned to the parent playbook.

4.3. Loops

Key Points Summary

Concepts: Loops in Playbook Tasks and Looping with Sub-Playbooks.

DEMO: Defang multiple indicators using a task loop.

DEMO: Check if hosts are UP or DOWN using a sub-playbook loop.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 27

Loops in Playbook Tasks

When an array of items is passed into an automation, XSOAR will automatically loop over
the array and execute the task for each item in the array.

Looping with Sub-Playbooks

For Each Input: The loop exits automatically, when the last item in the input is executed.

If there are multiple input lists with the same number of items, the sub-playbook runs
once for each set of inputs.

If there are multiple input lists with different numbers of items, the sub-playbook runs
the first set of inputs, followed by the second, third, etc.

⚙ If you have two lists: list1 = [1, 2] and list2 = [A, B] , the sub-playbook will run
twice: once with inputs 1 and A , and once with 2 and B .

If you have three lists: list1 = [1, 2, 3] , list2 = [A, B] , and list3 = [X] , the sub-
playbook will first run with 1 , A , and X ; then with 2 and B , and finally with 3 .

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 28

Built-in or Choose Loop Automation: The loop exits based on a condition. The playbook
does not loop through the inputs but takes the inputs as a whole.

❗ The default number of loops is 100. A high number may affect performance.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 29

4.4. Filters and Transformers

Key Points Summary

Concepts: Filters and Transformers.

DEMO: Create a file extension filter.

DEMO: Manipulating data with different transformers.

The data can be manipulated by using filters and transformers. You can add filters and
transformers in a playbook task or when mapping an instance.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 30

Filters

Filters are used to refine and limit the data based on specified conditions. They act as a
gatekeeper, allowing only the data that meets the defined criteria to pass through. This is
useful when you need to work with a subset of data or when you're looking to trigger actions
based on specific data conditions.

Common Use Cases for Filters:

Isolating incidents based on severity.

Filtering out false positives.

Extracting specific data points from a larger dataset.

Example Filter Conditions:

Field Equals: incident.severity == "High"

Field Contains: incident.name contains "phishing"

Field Greater Than: incident.time_to_resolve > 30

Transformers

Transformers are used to manipulate and change data into a desired format or structure.
They are applied to data to prepare it for further processing, presentation, or integration with
other systems. Transformers modify the data content or structure without changing the
original dataset.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 31

Common Use Cases for Transformers:

Converting timestamps to a readable format.

Extracting specific information from a text field.

Reformatting data for API calls or integrations.

Example Transformers:

Timestamp to Date: Converts a Unix timestamp to a human-readable date format.

Extract Regex: Extracts specific data from a string using a regular expression.

Lowercase: Converts all characters in a string to lowercase.

🤖 Some Useful Transformers

GetField: Retrieves a field from an object using the dot annotation.

Split & trim: Splits a string into an array of strings and removes white spaces from both
ends of the string.

ParseJSON: Parse a given JSON string "value" to a representative object

SetIfEmpty: Checks an object for an empty value and returns a pre-set value.

RegexExtractAll: Extraction of all matches from a specified regular expression pattern
from a provided string. Returns an array of results.

RegexReplace: Format patterns matched with regex. If the regex does not match any
pattern, the original value is returned.

RandomElementFromList: Randomly select elements from a list in Python.

Count: Counts number of elements.

4.5. Extend Context, Using argument and Quiet Mode

Key Points Summary

Concepts: Extend Context, Using argument, Quiet Mode.

DEMO: How to use Extend Context and the Using parameter to retrieve specific
data from commands.

DEMO: How to enable/disable quiet mode at task and playbook level.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 32

Extend Context

Extend Context is a feature that allows you to control what data and how much data is
returned to context. Extend Context can also be used when the same command is run
multiple times in the same playbook, but the outputs need to be saved to different context
keys.

When Ignore outputs is selected, the remaining outputs will not be stored in the context.
Only the selected keys will remain. By reducing the context data size, the performance is also
increased.

You can extend context either in a playbook task, or directly from the command line.
!<commandName> <argumentName> <value> extend-context=contextKey=JsonOutputPath ignore-outputs=true

💡 By default, when you run a command, either from the command line or as part of a
script or playbook, a subset of JSON fields are returned. To display the full JSON
response, run the command using the raw-response=true flag.
This will help you identify the information that you want to add to your extended
data.

Using argument
The
using argument specifies which integration instance to use when running an automation or
command.

In XSOAR, an integration can have multiple instances configured, each potentially pointing to
different servers or using different credentials. The using argument allows the user to specify
which instance should be used for the given operation, ensuring the right connection is used.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 33

!url url=https://google.com raw-response=true using="VirusTotal (API v3)

💡 If no instance is specified, it will use all instances available.

Quiet Mode

Quiet Mode refers to an operational mode where the script or automation runs without
producing verbose output.

This means that minimal information is printed to the War Room or console. Quiet Mode is
beneficial when you want to reduce noise in the output logs or when running automated
tasks where detailed output is unnecessary.

❗ When you enable Quiet Mode, War Room entries are not created and inputs and
outputs are not stored in the Work Plan. Quiet Mode improves performance by
increasing playbook speed and saving database size (recommended in production
environments). Turn it off when you are debugging.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 34

4.6. Error Handling and Playbook Metadata

Key Points Summary

DEMO: How to handle errors in playbooks. Configure an error path to send error
email notification.

DEMO: How to get playbook metadata.

Error Handling

Handling playbook errors in XSOAR involves defining how a playbook task should behave
when an error occurs during execution.

This can be managed by setting specific options for each task within the playbook.

Stop

If a task encounters an error, the playbook will stop executing.

This option is useful when you need manual intervention to review and resolve the
error before proceeding.

Example: If a task requires manual review or approval, the playbook should halt until
this step is completed.

Continue

The playbook continues to execute even if the task encounters an error.

This is useful for non-critical tasks where an error doesn’t impact the overall
playbook flow.

Example: A task that requires data from an optional service like EWS can be skipped
without affecting the main playbook.

Continue on Error Path

On task error, the playbook follows a predefined error path.

This path can be a separate branch designed to handle errors and can include
actions like clean-up, retry mechanisms, or logging.

Example: Define an error path to notify the engineering team.

To get task errors use the following command:

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 35

!GetErrorsFromEntry entry_id=${lastCompletedTaskEntries}

💡 The ${lastCompletedTaskEntries} returns the ID of the last war room entry created by
the previous playbook task.

Playbook Metadata

You can examine playbook metadata including the inputs and outputs of tasks, the storage
space each task's inputs and outputs consume, and the types of tasks.

This information is helpful for troubleshooting a custom playbook if your system experiences
slowdowns or high usage of CPU, memory, or disk space.

Once an incident is assigned to a playbook, you can analyse it to review the storage used by
its tasks' inputs and outputs. You can also filter the data based on the kilobytes used by each
task's inputs and outputs.

!getInvPlaybookMetaData incidentId=<incident ID> minSize=<size of the da

5. Automation Scripts Development
5.1. Demisto Class and Common Server functions

Key Points Summary

Concepts: Demisto Class and Common Server.

DEMO: Use of the most commonly used methods, functions and classes.

In XSOAR, previously known as Demisto, there are a few important components and classes
that you need to understand to effectively write and manage automation scripts and
integrations.

Two of the key components are the Demisto class and the CommonServer script.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 36

Demisto Class: All Python integrations and scripts include the demisto class object as
part of the runtime environment. This object provides a set of API methods used to
retrieve and send data to the XSOAR Server.

Common Server: Common functions that will be appended to the code of each
integration/script before being executed. Is a standard script provided by XSOAR that
includes various helper functions and classes to simplify script writing. It contains
reusable code that can be utilized across different scripts and integrations.

CommonServer (Javascript)

CommonServerPowerShell (Powershell)

CommonServerPython (Python)

Most Commonly Used Functions, Methods and Classes

Construct Description Return

demisto.args() Retrieves a command / script arguments.
dict - Arguments

object

demisto.context()
Retrieves the context data object of the
current incident.

dict - Context data
object

demisto.incident()

Retrieves the current incident and all its
fields. The incident custom fields will be
populated as a dict under the
CustomFields attribute.

dict - dict
representing an incident
object

demisto.get(

obj: dict, field: str,
defaultParam=None

)

Extracts field value from nested object.
You can specify the default value to
return in case the field doesn't exist in
object.

str - The value of the
extracted field

demisto.executeCommand(

command: str,
args: dict

)

Executes given integration command /
script and arguments.

Union[dict, list]:
Command execution
response wrapped in
Demisto entry object

demisto.setContext(

contextPath: str,
value: str

)

Sets given value in path in the context
data.

dict - Object contains
operation result status

demisto.executeCommand(

"setIncident", {}

)

Sets given value in path in the incident
data.

Union[dict, list]:
Command execution
response wrapped in
Demisto entry object

demisto.info(

msg: str,
Prints a message to the server logs in
info/error level.

None - No data
returned

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 37

Construct Description Return
*args: dict

)

demisto.error(

msg: str,
*args: dict

)

Server logs: /var/log/demisto/server.log

demisto.results(

results: Union[list, dict]

)

Outputs entries to the war-room. It is
recommended to use CommandResults
and return_results() instead of
results() .

None - No data
returned

CommandResults(

outputs_prefix: str,
outputs: list | dict

)

See full list of arguments in
documentation reference

CommandResults class - used to return
results to war room.

return_results(

results: CommandResults | str |
dict

)

This function wraps the
demisto.results() , supports.

dict - Result entry
object

return_warning(

message: str, exit: bool=False,
warning: str='', outputs: dict |
None=None,
ignore_auto_extract: bool=False

)

Returns a warning entry with the
specified message, and exits the script.

dict - Warning entry
object

return_error(

message: str,
error: str='', outputs: dict |
None=None

)

Returns error entry with given message
and exits the script

dict - Error entry
object

To see the full list, check the documentation refence.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 38

5.2. Develop in your favourite IDE

Key Points Summary

Concepts: Demistomock.

DEMO: How to use Demistomock to develop XSOAR scripts in Pycharm, Visual
Studio Code or any other IDE.

Demistomock (the demisto object): Is a Python module used for unit testing automation
scripts and integrations. This module allows developers to mock XSOAR-specific
functions and objects, enabling the simulation of the XSOAR environment during testing.

https://github.com/demisto/content/blob/master/Tests/demistomock/demistomock.py

🩼 XSOAR IDE limitations

Absence of an interpreter

No code completion

Absence of debugger

No error detection and linting

Syntax highlighting no customizable

Use Demistomock in your favourite IDE

demisto-playgrounds/

│

├── demistomock/

│ └── [Demistomock Files]

│

└── [Your Scripts]

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://github.com/demisto/content/blob/master/Tests/demistomock/demistomock.py

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 39

5.3. Developing Automation Scripts

Key Points Summary

DEMO: Develop an Automation Script using the acquired knowledge.

Get sample data for testing/debugging

Export root data

!js script="return ${.}"

Export context data

!py script="return_results(demisto.context())"

!PrintContext outputformat=json

Export incident data

!py script="return_results(demisto.incident())"

!Print value=${.incident}

Use case - AddIncidentTasks

This automation script creates a task list for the analyst with specific instructions based on
incident data. Analysts are expected to perform a list of steps, or tasks, in the process of
triaging, investigating, or remediating an incident.

5.4. Docker Images

Key Points Summary

Concepts: Docker in XSOAR.

DEMO: Create a custom Docker Image to your install dependencies.

Docker: Docker is a platform that allows developers to package applications and their
dependencies into containers. These containers are lightweight, portable, and consistent
across different environments, making it easier to develop, deploy, and run applications.

XSOAR uses Docker primarily for the execution of certain integrations and
automations. This helps in isolating execution environments and managing

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 40

dependencies.

Docker is required for engines to run Python/Powershell scripts and integrations in a
controlled environment.

All Docker images are available via Docker hub under the Demisto organization:

https://hub.docker.com/u/demisto/

The Docker image creation process is managed via the open source project
demisto/dockerfiles.

Docker images can be selected inside Automations and Integrations Settings.

Commands

List docker images (docker images)

/docker_images

Update Docker Images (docker pull)

/docker_image_update all=<bool> | image=<image_name>

Create a new Docker image and install dependencies (docker build)

/docker_image_create name="<name>" base="<docker_image_base>" dependen

cies="<dependency1>, <dependency2>" packages="<package1>, <package2>"

Example: Create a docker image and install the beatifulsoup4 python library.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://hub.docker.com/u/demisto/
https://github.com/demisto/dockerfiles

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 41

/docker_image_create name=”demisto/py3-bs4” base=”demisto/python3-deb:3.8.2.6981”

dependencies=beautifulsoup4

Fix Permission Denied Error

🚫 Error creating the docker image: ERROR: mkdir /home/demisto: permission denied
 (2650)

Run the following commands in the XSOAR server.

sudo mkdir -p /home/demisto

sudo chown demisto:demisto /home/demisto

5.5. XSOAR API

Key Points Summary

Concepts: XSOAR API and demisto-py.

DEMO: Core REST API Integration overview.

DEMO: Running XSOAR commands and creating incidents using demisto-py.

XSOAR API

The XSOAR API is a component of Cortex XSOAR that allows for programmatic interaction
with the XSOAR platform, enabling integration with various security tools, customization of
workflows, and automation of security operations.

To get your API KEY: Settings → Integrations → API Keys

Example using curl

 curl 'https://<host>:443/incidents/search' -H 'content-type: applicat

ion/json' -H 'accept: application/json' -H 'Authorization: <your api k

ey>' --data-binary '{"filter":{"query":"-status:closed -category:jo

b","period":{"by":"day","fromValue":30}}}' --compressed -k

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 42

Example using Core REST API Integration

!core-api-get uri="/health/containers”

Demisto-py

Demisto-py is a Python library designed to interact with the XSOAR API. A Demisto Client for
Python.

https://pypi.org/project/demisto-py/

https://github.com/demisto/demisto-py

Install demisto-py

pip install demisto-py

Example Script

import demisto_client.demisto_api

from demisto_client.demisto_api.rest import ApiException

api_key = 'XXXXXXXXXXXXX'

host = 'https://X.X.X.X'

api_instance = demisto_client.configure(base_url=host, api_key=api_ke

y, debug=False, verify_ssl=False)

def create_incident() -> None:

 create_incident_request = demisto_client.demisto_api.CreateInciden

tRequest()

 create_incident_request.name = 'Sample Simulation Incident'

 create_incident_request.type = 'Simulation'

 create_incident_request.owner = 'Admin'

 try:

 api_response = api_instance.create_incident(create_incident_re

quest=create_incident_request)

 print(api_response)

 except ApiException as e:

 print("Exception when calling DefaultApi->create_incident: %s

\n" % e)

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://pypi.org/project/demisto-py/
https://github.com/demisto/demisto-py

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 43

def run_command() -> None:

 update_entry = demisto_client.demisto_api.UpdateEntry(data="!Gener

atePassword min_digits=1",

 investigatio

n_id="529") # UpdateEntry | (optional)

 try:

 # Create new entry in existing investigation

 api_response = api_instance.investigation_add_entries_sync(upd

ate_entry=update_entry)

 print(api_response)

 except ApiException as e:

 print("Exception when calling DefaultApi->investigation_add_en

tries_sync: %s\n" % e)

if __name__ == '__main__':

 run_command()

6. Integration Development
6.1. Integration Categories and Uses Cases

Key Points Summary

XSOAR Integration Categories and Use Cases.

How Integrations work.

Integration Categories and Use Cases

As mentioned in a previous section, an integration in XSOAR is a connector or interface that
allows the platform to interact with external systems, applications, or services. Integrations
enable automated data exchange, incident management, and execution of actions across
different security and IT tools.

Refer to the link below to see typical use cases for various Cortex XSOAR integration
categories.

https://xsoar.pan.dev/docs/concepts/use-cases

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://xsoar.pan.dev/docs/concepts/use-cases

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 44

Category Top Use Cases

Analytics and SIEM Fetch Incidents with relevant filters, Create, close and delete
incidents/events/cases

Authentication
Use credentials from authentication vault in order to configure instances in
Cortex XSOAR, Lock/Delete Account – Give option to lock account
(credentials), and unlock/undelete

Case Management Create, get, edit, close a ticket/issue, add + view comments, Assign a
ticket/issue to a specified user

Data Enrichment &
Threat Intelligence

Enriching information about different IOC types: Upload object for scan and get
the scan results, Search for former scan results about an object

Email Gateway Get message – Download the email itself, retrieve metadata, body, Download
attachments for a given message

Endpoint Fetch Incidents & Events, Get event details (from specified incident)

Forensics and
Malware Analysis

Submit a file and get a report (detonation), Submit a URL and get a report
(detonation)

Network Security
(Firewall)

Create block/accept policies (Source, Destination, Port), for IP addresses and
domains, Add addresses and ports (services) to predefined groups, create
groups, etc.

Network Security
(IDS/IPS)

Get/Fetch alerts, Get PCAP file, packet

Vulnerability
Management

Enrich asset – get vulnerability information for an asset (or a group of assets) in
the organization, Generate/Trigger a scan on specified assets

IAM (Identity and
Access
Management)

Create, update and delete users.
Block users, Force change of passwords.

And there are still many more categories of integrations; you can consult these in the
documentation.

How Integration works

1. API-Based Integrations

API (Application Programming Interface) integrations are one of the most common methods
used in XSOAR. These integrations use APIs provided by external systems to fetch data,
execute actions, or send data back to those systems.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 45

2. Webhook-Based Integrations

Webhooks provide a way for external systems to push real-time data or execute automation
scripts in XSOAR without the need for continuous polling.

3. Other

Database Integrations

CLI Integrations

etc.

6.2. Integration Commands, Methods and Functions

Key Points Summary

Overview of the most commonly used commands, methods and functions in
Integrations.

Most Commonly Used Commands, Methods and Functions in Integrations

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 46

Construct Description Return

demisto.command()
Retrieves the integration
command that is being run.

str - Integrations
command name

demisto.getIntegrationContext()
Retrieves the
IntegrationContext object.

dict - IntegrationContext
object

demisto.setIntegrationContext(context:
dict

)

Stores given object in the
IntegrationContext object.

None - No data returned

demisto.getLastRun()

Retrieves the LastRun object.
This helps avoid duplicate
incidents by fetching only
events that occurred since
the last time the function was
run.

dict - LastRun object

demisto.setLastRun(obj)

When the last events are
retrieved, you need to save
the new last run time to the
integration context. This
timestamp will be used the
next
time the
fetch-incidents function
runs.

None - No data returned

demisto.incidents(

incidents: list

)

In script, retrieves the
Incidents list from the

context.
In integration, used to return
(create) incidents to the
server.

None - No data returned

demisto.integrationInstance()

Retrieves the integration
instance name in which ran
in.

str - The integration
instance name

demisto.params() Retrieves the integration
parameters object.

dict - Integrations
parameters object

register_module_line(

module_name: str,
start_end: str

)

Register a module in the line
mapping for the traceback
line correction algorithm.

None - No data returned

fetch-incidents

Built- in command that
XSOAR calls to import new
incidents.
It is triggered by the
Fetches incidents parameter
in the integration
configuration.

None - No data returned

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 47

Construct Description Return

test-module

Built-in command that XSOAR
calls when the user has
clicked the integration test
button while setting up or
editing an integration
instance.

When returning ok, the user
is shown a green Success
message. If any value other
than ok is returned, an error
is displayed

fetch-indicators

Built- incommand that XSOAR
calls to import new
indicators. It is triggered by
the Fetches indicators
parameter in the integration
configuration.

None - No data returned

6.3. Developing Integrations I

Key Points Summary

DEMO: Develop an Utility Integration using the acquired knowledge.

Fetches incidents using sample data.

Load sample incidents on demand.

Sample data

{"alertName": "Phishing Attack", "type": "phishing", "email": "test@ou

tlook.com"}

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 48

6.4. Developing Integrations II

Key Points Summary

DEMO: Develop an API-based Integration using the acquired knowledge.

EXTRA: Troubleshooting.

Detect web technologies

API Development Platform: https://hoppscotch.io/

Integration logs (Log Level On)

/var/log/demisto/integration-instance.log

!command debug-mode=true

7. Pre-processing and Post-processing
7.1. Pre-Processing Rules

Key Points Summary

Concepts: Pre-Process Rules and actions.

DEMO: Create a Pre-process rule to filter incidents.

Pre-processing Rules: Pre-process rules enable you to perform certain actions on
incidents as soon as they are ingested (after classification and mapping) but before the

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://hoppscotch.io/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 49

incident is created XSOAR. These rules help to streamline incident management by
performing specific actions such as deduplication, linking, dropping, or closing incidents
based on defined criteria.

Settings → Object Setup → Pre-Process Rules

💡 Rules are executed from top to bottom. Once a rule is triggered, the flow stops, and
no further rules are triggered.

Actions for Pre-Processing Rules

Link and Close Links the incoming incident to an existing one and closes the incoming incident. If no
matching incident is found, a new incident is created.

Close Closes the incoming incident without running the associated playbook.

Drop Discards the incoming incident without creating it, useful for low or no-value
incidents.

Drop and

Update

Discards the incoming incident and updates the Dropped Duplicate Incidents table of
an existing incident, also making an entry in the War Room. If no match is found, a
new incident is created.

Link Links the incoming incident to an existing one, without closing it.

Run a Script Executes a predefined script on the incoming incident.

7.2. Pre-processing Scripts

Key Points Summary

Concepts: Pre-processing Scripts and use cases.

DEMO: Create a Pre-process rule to run a custom script that adds custom tags.

Pre-processing scripts in XSOAR are scripts executed on incoming incidents as part of the
pre-processing phase. This phase occurs after incident classification and mapping but
before the incident is fully created in the system. These scripts allow for more complex and
dynamic handling of incidents based on specific conditions and criteria that may not be
covered by standard pre-processing rules.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 50

💡 Pre-processing scripts are identified using the preProcessing tag.

Some Use Cases

Incident Deduplication

Incident Enrichment

Add Tasks for Analysts.

Conditional Incident Routing

Advanced Incident Filtering and tagging

Incident Prioritization

Compliance Check

Data Transformations

etc.

7.3. Post-processing Scripts

Key Points Summary

Concepts: Post-processing scripts, available arguments and use cases.

DEMO: Use a Post-processing script to ensure incident’s required information is in
place before closing.

Post-processing scripts in XSOAR are scripts that execute additional actions after an
incident has been remediated and is about to be closed. These scripts allow you to perform
various tasks such as updating external systems, sending notifications, or adding final notes
to the incident. They ensure that all necessary follow-up actions are taken care of
automatically, streamlining the incident management workflow.

Post-processing are added to Incident Types.

💡 Post-processing scripts are identified using the post-processing tag.
Once the post-processing script completes the incident closes.
If a post-processing script returns an error, the incident does not close.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 51

Available Arguments

closed The time the incident was closed.

status The current status of the incident.

openDuration The duration for which the incident was open.

closeNotes Notes added at the time of closing the incident.

closingUserId The ID of the user who closed the incident, or "DBot" if it was closed by an automated
process.

closeReason The reason for closing the incident.

Other fields Any other field values passed in at closure, whether through the incident close form,
the CLI, or a playbook task.

Some Use Cases

Ticket Closure in External Systems (ServiceNow, Jira, etc.).

Email or chat message notification.

Documentation and Logging.

Metrics and KPIs Tracking.

Sync with External Systems.

Incidents Fields Check

etc.

8. Building Your XSOAR Automated Workflow
8.1. Use Case Definition

Key Points Summary

Use Case Template overview

Defining the Use Case and scenario

In this final module, the goal is to consolidate all the knowledge acquired to build your XSOAR
Automated Workflow. Typically, everything begins by defining a use case.

It is recommended to use a Use Case Definition Template to plan it. This will help us
determine what is needed to implement the automation effectively. You can create your own

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 52

or use any other provided.

Use Case Template provided by Pal Alto

https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/cortex-
xsoar/cortex-xsoar-use-case-template.pdf

Normally, when building a automated workflow from scratch, the following steps are
followed:

1. Integration installation and configuration.

2. Incident Types and Fields

3. Classifiers and Mappers

4. Pre-processing

5. Playbook development

6. Post-processing

7. Final Tests

🗨️ Scenario

As a Security Automation Engineer, you are responsible for ensuring that any
critical changes made to your organization environment are promptly identified and
communicated to relevant stakeholders.

Your lead has tasked you with building an automated workflow that notifies critical
changes on configurations three key areas:

Virtual Machines (VMs)

Networking and Security Information

Event Management (SIEM)

The goal is to send notifications to the respective teams whenever a critical change
occurs.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/cortex-xsoar/cortex-xsoar-use-case-template.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/cortex-xsoar/cortex-xsoar-use-case-template.pdf

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 53

Use Case Definition

Name Automated notification for critical changes

Description
Playbook that alerts for critical changes in VM configurations,
network configurations, and SIEM configurations.

Trigger Via Webhook (Integration)

Remediation Steps

1. Determine if the change operation is successful (pre-process).

2. Check the type of resource to determine which technical team it belongs to.

a. Microsoft.Compute → Sysadmin Team

b. Microsoft.Network → Networking Team

c. Microsoft.SecurityInsights → SIEM/SOAR Team

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 54

3. Build email body and send notification.

Integrations

Integration Name Actions Needed

Generic Webhook
Create incidents on event triggers. The trigger can
be any query posted to the integration.

Mail Sender
send-mail:
Send an email.

Classification

Critical Changes - Classifier

Logic Incident Type

level == “critical” Critical Changes

Mapping

Critical Changes - Mapper

Raw Key XSOAR Field System

operationName Operation Name Yes

status Status Reason Yes

caller Caller Yes

eventTimestamp Event Timestamp No

level severity Yes

resourceId Resource ID Yes

resourceId (transform) Resource Name Yes

properties Details Yes

name (transform) Yes

Pre-processing

Rule Name Logic Action

Drop not successful
Critical Changes

type equals Critical Changes AND severity equals Critical
AND statusreason doesn't equal Succeeded Drop

Playbooks

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 55

Playbook Name Inputs Outputs

Critical Changes -
Notification v1

- -

Post-processing

None

Sample - Virtual Machine

VM Resize to a Much Larger Size (Critical)

{

 "time": "2024-08-06T16:30:45.9876543Z",

 "operationName": "Microsoft.Compute/virtualMachines/write",

 "status": "Succeeded",

 "properties": {

 "statusCode": "OK",

 "serviceRequestId": "c4d5e6f7-8901-2345-6789-abcdef012345",

 "errorCode": null,

 "eventCategory": "Administrative",

 "isComplianceCheck": false

 },

 "caller": "admin@company.com",

 "correlationId": "f6g7h8i9-0123-4567-8901-bcdef1234567",

 "resourceId": "/subscriptions/12345678-1234-1234-1234-12345678901

2/resourceGroups/CriticalResourceGroup/providers/Microsoft.Compute/vir

tualMachines/CriticalVM",

 "eventTimestamp": "2024-08-06T16:30:45.9876543Z",

 "submissionTimestamp": "2024-08-06T16:31:15.9876543Z",

 "eventDataId": "e7f8g9h0-1234-5678-9012-abcd34567890",

 "level": "Critical",

 "resourceGroupName": "CriticalResourceGroup",

 "resourceProviderName": {

 "value": "Microsoft.Compute",

 "localizedValue": "Microsoft.Compute"

 },

 "resourceType": {

 "value": "Microsoft.Compute/virtualMachines",

 "localizedValue": "Virtual Machines"

 },

 "operationId": "g8h9i0j1-2345-6789-0123-cdef45678901",

 "operationName": {

 "value": "Microsoft.Compute/virtualMachines/write",

 "localizedValue": "Update Virtual Machine"

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 56

 },

 "properties": {

 "update": {

 "hardwareProfile": {

 "vmSize": "Standard_E64s_v3"

 }

 }

 }

}

Sample - Networking

Critical Network Security Group (NSG) Rule Change

{

 "time": "2024-08-06T17:15:30.4567890Z",

 "operationName": "Microsoft.Network/networkSecurityGroups/security

Rules/write",

 "status": "Succeeded",

 "properties": {

 "statusCode": "OK",

 "serviceRequestId": "d6e7f8g9-0123-4567-8901-abcdef234567",

 "errorCode": null,

 "eventCategory": "Administrative",

 "isComplianceCheck": false

 },

 "caller": "networkAdmin@company.com",

 "correlationId": "h9i0j1k2-3456-7890-1234-def567890123",

 "resourceId": "/subscriptions/12345678-1234-1234-1234-12345678901

2/resourceGroups/SecurityResourceGroup/providers/Microsoft.Network/net

workSecurityGroups/CriticalNSG",

 "eventTimestamp": "2024-08-06T17:15:30.4567890Z",

 "submissionTimestamp": "2024-08-06T17:16:00.4567890Z",

 "eventDataId": "i0j1k2l3-4567-8901-2345-efgh67890123",

 "level": "Critical",

 "resourceGroupName": "SecurityResourceGroup",

 "resourceProviderName": {

 "value": "Microsoft.Network",

 "localizedValue": "Microsoft.Network"

 },

 "resourceType": {

 "value": "Microsoft.Network/networkSecurityGroups",

 "localizedValue": "Network Security Groups"

 },

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 57

 "operationId": "j1k2l3m4-5678-9012-3456-ghij78901234",

 "operationName": {

 "value": "Microsoft.Network/networkSecurityGroups/securityRule

s/write",

 "localizedValue": "Update Network Security Group Rule"

 },

 "properties": {

 "update": {

 "securityRule": {

 "name": "Allow-SSH",

 "properties": {

 "priority": 100,

 "direction": "Inbound",

 "access": "Allow",

 "protocol": "Tcp",

 "sourcePortRange": "*",

 "destinationPortRange": "22",

 "sourceAddressPrefix": "*",

 "destinationAddressPrefix": "*"

 }

 }

 }

 }

}

Sample - SIEM

Adding a New Data Connector in Microsoft Sentinel

{

 "time": "2024-08-06T18:45:20.6543210Z",

 "operationName": "Microsoft.OperationalInsights/workspaces/provide

rs/Microsoft.SecurityInsights/dataConnectors/write",

 "status": "Succeeded",

 "properties": {

 "statusCode": "OK",

 "serviceRequestId": "e7f8g9h0-1234-5678-9012-abcd345678ef",

 "errorCode": null,

 "eventCategory": "Administrative",

 "isComplianceCheck": false

 },

 "caller": "siemAdmin@company.com",

 "correlationId": "k2l3m4n5-6789-0123-4567-ijkl89012345",

 "resourceId": "/subscriptions/12345678-1234-1234-1234-12345678901

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 58

2/resourceGroups/SentinelResourceGroup/providers/Microsoft.Operational

Insights/workspaces/SentinelWorkspace/providers/Microsoft.SecurityInsi

ghts/dataConnectors/NewDataConnector",

 "eventTimestamp": "2024-08-06T18:45:20.6543210Z",

 "submissionTimestamp": "2024-08-06T18:46:00.6543210Z",

 "eventDataId": "l3m4n5o6-7890-1234-5678-mnop12345678",

 "level": "Critical",

 "resourceGroupName": "SentinelResourceGroup",

 "resourceProviderName": {

 "value": "Microsoft.SecurityInsights",

 "localizedValue": "Microsoft.SecurityInsights"

 },

 "resourceType": {

 "value": "Microsoft.SecurityInsights/dataConnectors",

 "localizedValue": "Data Connectors"

 },

 "operationId": "m4n5o6p7-8901-2345-6789-opqr34567890",

 "operationName": {

 "value": "Microsoft.SecurityInsights/dataConnectors/write",

 "localizedValue": "Create or Update Data Connector"

 },

 "properties": {

 "dataConnector": {

 "name": "NewDataConnector",

 "properties": {

 "kind": "AzureActivity",

 "connectorUiConfig": {

 "title": "Azure Activity",

 "description": "Connect Azure Activity logs to Azu

re Sentinel",

 "instructions": "Follow the instructions to enable

Azure Activity logs data connector."

 },

 "config": {

 "state": "Enabled",

 "logAnalyticsWorkspaceResourceId": "/subscription

s/12345678-1234-1234-1234-123456789012/resourceGroups/SentinelResource

Group/providers/Microsoft.OperationalInsights/workspaces/SentinelWorks

pace"

 }

 }

 }

 }

}

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 59

8.2. Walkthrough

Key Points Summary

DEMO: Building your XSOAR Automated Workflow

In this walkthrough, we will cover:

Integration Installation and Set Up

Incident Types and Fields

Classifiers and Mappers

Pre-processing

Playbook Development

Final Tests

Check if server is listening for webhooks

netstat -pnltu | grep <port>

Example: netstat -pnltu | grep 8080

Send test POST request

curl -X POST -d '{"test":"test"}' http://<server>:<port>

Example: curl -X POST -d '{"test":"test"}' http://localhost:8080

8.3. Another Use Case and Automated Workflow

Key Points Summary

Overview of another use case definition and automated workflow.

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 60

Use Case Definition

Name A potentially phishing link was clicked

Description

User clicked on a link that may be part of a phishing attempt.
The aim is to implement a playbook to determine if it is truly
malicious, discard false positives, notify the necessary teams,
block it, etc.

Trigger Via API (Integration)

Remediation Steps

1. Determine if the URL is malicious.

2. If not malicious close incident as False Positive and add it to a list.

3. If malicious:

a. Run quick device scan and notify EDR Team.

b. Reset user password and provide new password.

c. Block URL and add it to a list.

Integrations

Integration Name Actions Needed

VirusTotal (API v3) url:
Checks the reputation of a URL.

SplunkPy fetch-incidents

Microsoft Defender for Endpoint
microsoft-atp-run-antivirus-scan:
Initiate a Microsoft Defender Antivirus scan on a
machine.

Azure Active Directory Users msgraph-user-change-password:
Changes the user password.

Zscaler Internet Access zscaler-blacklist-url:
Adds the specified URLs to the block list.

Mail Sender send-mail:
Send an email.

Classification

Phishing - Custom - Classifier

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 61

Logic Incident Type

alarm_category == “Phishing” Phishing - Custom

Mapping

Phishing - Custom - Mapper

Raw Key XSOAR Field System

User User Yes

URL Email URL Clicked Yes

DeviceID Device Id Yes

DeviceName Device Name Yes

siem_type_id Vendor Product Yes

alarm_category Type Yes

Pre-processing

Rule Name Logic Action

Drop incidents with
excluded URLs

If URL in list(ExcludedURLs) Drop

Playbooks

Playbook Name Inputs Outputs

Phishing - Custom v1 - -

AAD - Reset User
Password

user NEW_PASSWORD

Post-processing

Script Name Objective

CheckDataPostProcessing Verify close reason and notes are provided.

Sample

{

 "events": [

 {

 "DeviceName": "test-device",

 "DeviceID": "6fa3f44c8f4b4b5b8c12345678abcdef",

 "User": "john.doe@mycompany.com",

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 62

 "URL": "https://duckduckgo.com"

 }

],

 "security-alarm": {

 "alarm_category": "Phishing",

 "event_type_id": 172157,

 "name": "A potentially phishing link was clicked",

 "num_events": 1,

 "risk": 2,

 "siem_type_id": "Splunk",

 "timestamp": 1722848280000,

 }

}

9. Course Conclusion
Thank you for joining me on this journey!

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 63

By now, you should have a solid understanding of how to leverage XSOAR’s robust
capabilities to integrate security tools and streamline incident response.

Remember, the PDF guide and source code provided will be valuable resources as you
continue to refine your skills and apply what you've learned in real-world scenarios.
Automation is a powerful tool that can dramatically improve response times and reduce
human error, and with the knowledge gained in this course, you’re well-equipped to make the
most of it.

If you have any questions or need further assistance, don’t hesitate to reach out.

Thank you once again for your time and support. I look forward to seeing how you apply your
new skills in the field and wish you all the best in your future security automation projects.

Happy automating!

Kalec Blau

10. Reference and Further Reading
Cortex XSOAR Administrator Guide

https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.5/Cortex-XSOAR-
Administrator-Guide/Overview

XSOAR Content GitHub

https://github.com/demisto/content

XSOAR Developer Docs

https://xsoar.pan.dev/docs/welcome

Cortex XSOAR Python Development Quick Start Guide

https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Python-
Development-Quick-Start-Guide

Cortex XSOAR Tutorials

https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Tutorials-6.x

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.5/Cortex-XSOAR-Administrator-Guide/Overview
https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.5/Cortex-XSOAR-Administrator-Guide/Overview
https://github.com/demisto/content
https://xsoar.pan.dev/docs/welcome
https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Python-Development-Quick-Start-Guide
https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Python-Development-Quick-Start-Guide
https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Tutorials-6.x

PDF - XSOAR - Security Orchestration and Automation Course - Kalec Blau 64

Cortex XSOAR Playbook Design Guide

https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Playbook-
Design-Guide

Best Practices

https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Playbook-
Design-Guide/Best-Practices

https://www.udemy.com/course/xsoar-security-orchestration-and-automation-course/?referralCode=8F469AAD51A79BAA5950
https://nostwin.github.io/xsoar-course-materials/

https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Playbook-Design-Guide
https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Playbook-Design-Guide
https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Playbook-Design-Guide/Best-Practices
https://docs-cortex.paloaltonetworks.com/r/Cortex-XSOAR/6.x/Cortex-XSOAR-Playbook-Design-Guide/Best-Practices

